Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Shu-Sheng Zhang, ${ }^{\text {a }}$ Hua-You

Hu, ${ }^{\text {b }}$ Jian-Hua Xu, ${ }^{\text {b }}$ Xue-Mei Li ${ }^{\text {a }}$ and Hoong-Kun Fun ${ }^{\text {c* }}$
${ }^{\text {a College of Chemistry and Molecular }}$ Engineering, Qingdao University of Science and Technology, 266042 Qingdao, Shandong, People's Republic of China, ${ }^{\mathbf{b}}$ Department of Chemistry, Nanjing University, 210093 Nanjing, People's Republic of China, and ${ }^{\text {c }} \mathrm{X}$-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia

Correspondence e-mail: hkfun@usm.my

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.063$
$w R$ factor $=0.138$
Data-to-parameter ratio $=16.1$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

2a,5a-Dichloro-4-methyl-1-methylene-2-phenyl-2a,5a-dihydrocyclobuta[c]-pyrrole-3,5-dione

In the title compound, $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{Cl}_{2} \mathrm{NO}_{2}$, the pyrrolidine ring is planar within 0.050 (3) \AA and the cyclobutane ring is planar within 0.059 (3) \AA. The dihedral angle between these two planes is $67.4(2)^{\circ}$. The packing of the molecules in the crystal is stabilized by $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions.

Comment

In our recent investigation on photoinduced reactions of 3,4dichloromaleimide with styrene derivatives (Zhao \& Xu, 2003), we carried out a photoinduced reaction of 3,4-dichloromaleimide with phenylpropadiene. The title compound, (I), was obtained in this reaction as one of the two stereoisomers. It is formed by [2+2]-cycloaddition of the tripletexcited dichloromaleimide with phenyl propadiene at its central $\mathrm{C}=\mathrm{C}$ bond. An X-ray crystallographic analysis was undertaken to elucidate its molecular conformation.

The bond lengths in (I) are within normal ranges (Allen et al., 1987), except for a long C2-C7 bond, 1.577 (4) Å. This may be due to the steric effect of the bulky substituent attached at atom C7. The pyrrolidinedione moiety is essentially planar, mainly due to $\mathrm{C}=\mathrm{O}$ and $\mathrm{C}-\mathrm{N}$ conjugation. The cyclobutane ring ($\mathrm{C} 2 / \mathrm{C} 3 / \mathrm{C} 6 / \mathrm{C} 7$) is planar within 0.059 (3) \AA; the dihedral angle between the $\mathrm{C} 3 / \mathrm{C} 2 / \mathrm{C} 7$ and $\mathrm{C} 3 / \mathrm{C} 6 / \mathrm{C} 7$ planes is $12.2(4)^{\circ}$. The cyclobutane mean plane makes a dihedral angle of $67.4(2)^{\circ}$ with the fused five-membered ring ($\mathrm{N} 1 / \mathrm{C} 1-\mathrm{C} 4$). The phenyl ring ($\mathrm{C} 8-\mathrm{C} 13$) attached at C 7 makes dihedral angles of 71.9 (2) and $9.9(2)^{\circ}$ with the cyclobutane

Figure 1
The structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme.

Received 15 October 2003
Accepted 21 October 2003
Online 31 October 2003
ring and the pyrrolidine ring, respectively. The $\mathrm{Cl} 1-\mathrm{C} 2-$ $\mathrm{C} 3-\mathrm{Cl} 2$ torsion angle of 12.7 (3) ${ }^{\circ}$ indicates that the two Cl atoms lie on the same side of the cyclobutane ring.

In the crystal structure of (I), there is one intramolecular $\mathrm{C} 5-\mathrm{H} 5 \mathrm{C} \cdots \mathrm{O} 2$ interaction, forming a five-membered ring (Fig. 1). The molecular packing in the crystal structure is stabilized by $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions involving the methyl group with the phenyl ring of a symmetry-related molecule (Table 2).

Experimental

The title compound, (I), was prepared by photolysis of a benzene solution of 3,4-dichloromaleimide in the presence of an excess amount of propadiene, followed by chromatographic separation of the reaction mixture on a silica-gel column with petroleum ether (b.p. 333-363 K)-ethyl acetate as eluants. Single crystals suitable for X-ray crystallographic analysis were grown by slow evaporation of solvent from petroleum ether (b.p. 333-363 K)-ethyl acetate (3:1 v / v).

Crystal data

$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{Cl}_{2} \mathrm{NO}_{2}$
$M_{r}=296.14$
Monoclinic, $C 2 / c$ 。
$a=14.8302$ (11) £
$b=7.3973$ (5) A
$c=25.3885(18) \AA$
$\beta=106.167$ (1) ${ }^{\circ}$
$V=2675.1(3) \AA^{3}$
$Z=8$

Data collection

Siemens SMART CCD areadetector diffractometer
ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.802, T_{\text {max }}=0.927$
8171 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.063$
$w R\left(F^{2}\right)=0.138$
$S=1.20$
3302 reflections
205 parameters
H atoms treated by a mixture of independent and constrained refinement

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{C} 1-\mathrm{C} 2$	$1.751(3)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.555(3)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.756(3)$	$\mathrm{C} 2-\mathrm{C} 7$	$1.577(4)$
$\mathrm{O} 1-\mathrm{C} 1$	$1.202(3)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.520(4)$
$\mathrm{O} 2-\mathrm{C} 4$	$1.195(3)$	$\mathrm{C} 3-\mathrm{C} 6$	$1.525(4)$
$\mathrm{N} 1-\mathrm{C} 1$	$1.373(3)$	$\mathrm{C} 6-\mathrm{C} 14$	$1.309(4)$
$\mathrm{N} 1-\mathrm{C} 4$	$1.387(4)$	$\mathrm{C} 6-\mathrm{C} 7$	$1.525(4)$
$\mathrm{N} 1-\mathrm{C} 5$	$1.462(3)$	$\mathrm{C} 7-\mathrm{C} 8$	$1.513(4)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.530(4)$		
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 4$	$115.0(2)$	$\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 5$	$122.0(2)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 5$	$123.0(2)$		

Table 2
Hydrogen-bonding geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
C5-H5C $\cdots \mathrm{O} 2$	0.96	2.49	$2.872(4)$	103
C5-H5B $\cdots C g P^{\mathrm{i}}$	0.96	2.75	$3.579(3)$	145

Symmetry code: (i) $\frac{1}{2}+x, y-\frac{1}{2}, z . C g P$ denotes the centroid of the phenyl ring.
All H atoms were located in difference Fourier maps and were refined isotropically, except for those attached to the methyl C atom, which were positioned geometrically and treated as riding, with $\mathrm{C}-\mathrm{H}$ distances of $0.96 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$. The $\mathrm{C}-\mathrm{H}$ distances of the refined H atoms lie in the range 0.85 (4)-0.97 (4) \AA.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: $\operatorname{SHELXTL}$; molecular graphics: $S H E L X T L$; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2003).

The authors thank the Malaysian Government and Universiti Sains Malaysia for research grant R\&D No. 305/ PFIZIK/610961.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Zhao, B.-G. \& Xu, J.-H. (2003). In preparation.

